当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2020年系列学术活动(第299场):王勤 教授 华东师范大学

发表于: 2020-11-30   点击: 

报告题目:Band truncation approximations for operators in lp uniform Roe algebras and applications

报 告 人:王勤 教授 华东师范大学

报告时间:2020年12月4日 14:30-15:30

报告地点:腾讯会议 ID:253 251 669 密码:123456

校内联系人:张远航   zhangyuanhang@jlu.edu.cn


报告摘要:

Uniform Roe algebras are typically C*-algebras on discrete metric spaces which reflect large scale geometry of the underlying spaces. Recently, the l^p versions of uniform Roe algebras have attracted much

attention due to their applications in operator theory, operator algebras and K-theory.

In this talk, we will determine a large class of dense subspaces of l^p uniform Roe algebras of discrete groups whose elements can be approximated in operator norm by their band truncations. Under an l^p version of Rapid Decay condition, we construct a spectral invariant subalgebra of the l^p uniform Roe algebra of a discrete group. We also establish that the K-theory groups of these l^p operator algebras on discrete metric spaces with Yu's property (A) depend continuously on p.


报告人简介:

王勤,华东师范大学数学科学学院算子代数研究中心教授、博士生导师,主要从事算子代数、粗几何、非交换几何等领域的研究,在非交换几何的重要问题“粗Baum-Connes猜想”、“粗Novikov猜想”等方面取得了若干重要成果,曾获全国百篇优秀博士论文奖,入选教育部新世纪优秀人才支持计划、上海市曙光学者、上海市浦江学者,在 J. Reine Angew. Math.Adv. Math. J. Funct. Anal.等国际权威期刊发表论文30余篇。