当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2020年系列学术活动(第219场):王卓然 博士 中山大学

发表于: 2020-09-21   点击: 

报告题目:Analysis of a 2-field finite element solver for linear poroelasticity on quadrilateral meshes

报  告  人:王卓然 博士  中山大学

报告时间:2020年9月23日(周三)上午9:00-10:30

报告地点:腾讯会议ID 189 669 154

会议链接:https://meeting.tencent.com/s/xmAo1MW4gRyT

校内联系人:王瑞姝wangrs_math@jlu.edu.cn

报告摘要:

This talk presents a novel 2-field finite element solver for linear poroelasticity on general convex quadrilateral meshes. The Darcy flow is discretized by the lowest order weak Galerkin (WG) finite element method, which establishes the discrete weak gradient and numerical velocity in the lowest order Arbogast-Correa space. The linear elasticity is discretized by enriched Lagrangian finite elements with the reduced integration technique for the dilation. First order implicit Euler time discretization is implemented to solve the coupled time-dependent system. A error analysis is presented along with numerical experiments to demonstrate the accuracy and locking-free property of this new solver. This is a joint work with Dr. James Liu and Dr. Simon Tavener.

报告人简介:

王卓然博士,科罗拉多州立大学数学博士,中山大学助理教授,研究方向为weak Galerkin有限元方法解偏微分方程。