当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2020年系列学术活动(第210场):杨家青副教授 西安交通大学

发表于: 2020-09-09   点击: 

报告题目:Convergence analysis of the PML method for time-domain electromagnetic scattering problems

报 告 人:杨家青副教授 西安交通大学

报告时间:2020年9月10日上午 8:50-09:25

报告地点:腾讯会议 ID:233 270 107

会议密码:0910

校内联系人:吕俊良  lvjl@jlu.edu.cn


报告摘要:

In this talk, we will report our recent work on the perfectly matched layer (PML) method of the time-domain electromagnetic scattering problems in 3D. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coordinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Green's function for the Maxwell equations in the free space.


报告人简介:杨家青,西安交通大学副教授,博导。2012年博士毕业于中国科学院数学与系统科学学院;2012-2014年在中国科学院系统科学研究所做博士后;2014-2015年在香港中文大学做Research Fellow;2015年入职西安交通大学数学与统计学院,研究方向为反问题的数学理论与计算,在应用数学与计算数学领域的国际权威期刊 Inverse Problems, SIAM Journal on Numerical Analysis, SIAM Journal on Applied Mathematics, SIAM Journal on Imaging Sciences, Inverse Problems and Imaging, Journal of Differential Equations 等发表学术论文20余篇。