报告题目:A Free Boundary Problem for Modeling Plaques in the Artery
报 告 人:胡钡 教授 (美国University of Notre Dame)
报告时间:2019年6月18日15:30--16:30
报告地点:数学楼第二报告厅
报告摘要:
We shall present a free boundary problem modeling the growth of a plaque in the artery. Atherosclerosis is a leading cause of death worldwide; it originates from a plaque which builds up in the artery. In our model, we consider a simplified version of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We present the existence of a small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. Necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times, are discussed.
报告人简介:
胡钡教授现就职于美国University of Notre Dame,先后师从国内外偏微分方程领域的专家姜礼尚教授和Avner Friedman教授,多年来从事偏微分方程理论及其应用研究,尤其在抛物方程的爆破理论,生物医学中的自由边值问题的理论和数值以及具有金融背景的自由边界问题数值解的收敛性等研究领域中取得了丰富的研究成果,在J. Differential Equations,SIAM J. Math. Anal.,Arch. Ration. Mech. Anal.等国际著名期刊上发表高水平学术论文百余篇,被引用千余次。现任《Discrete and Continuous Dynamical Systems-Series B》以及《Nonlinear Analysis-Real World Application》编委。