报告题目:Recent Developments in the Schur-Weyl Duality
报 告 人:杜杰教授 澳大利亚新南威尔士大学
报告时间:2019年7月13日15:30-16:20
报告地点:数学楼第一报告厅
Abstract:
Schur algebras are certain finite dimensional algebras introduced by Issai Schur, one of the pioneers of representation theory, at the beginning of last century to relate representations of the general linear and symmetric groups. This theory is also known as the Schur-Weyl duality. Over its history of one hundred years, Schur algebras continue to make profound influence in several areas of mathematics such as Lie theory, representation theory, invariant theory, combinatorics, etc. I will outline some definitions of (quantum) Schur algebras and discuss a number of applications. In particular, I will report on some latest developments in the affine and super cases.
报告人简介:
杜杰,澳大利亚新南威尔士大学教授,在Weyl群的胞腔分解、代数群,q-Schur代数及其表示、在Ringle-Hall 代数及量子群和量子超群等方面取得了一系列原创性的成果,目前已经在国际一流杂志发表论文70余篇,合作完成专著《Finite dimensional algebras and quantum groups》和《A double Hall algebra approach to quantum affine Schur-Weyl theory》,分别在美国数学会和伦敦数学会出版。