当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2019年系列学术活动(第130场):李自田教授 曲靖师范学院

发表于: 2019-07-24   点击: 

报告题目:DIVERSITY SOLITON EXCITATIONS FOR THE (2+1)-DIMENSIONAL SCHWARZIAN KORTEWEG-DE VRIES EQUATION

报 告 人:曲靖师范学院李自田教授

报告时间:2019839:30—10:30

报告地点:数学楼202

Abstract:

With the aid of symbolic computation, we derive new types of variable separation solutions for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation based on an improved mapping approach. Rich coherent structures like the soli-ton-type, rouge wave-type, and cross-like fractal type structures are presented, and moreover, the fusion interactions of localized structures are graphically in-vestigated. Some of these solutions exhibit a rich dynamic, with a wide variety of qualitative behavior and structures that are exponentially localized.

报告人简介:

   李自田,男,教授,硕士学位,主要从事偏微分方程解析解的研究。现任曲靖师范学院数学系副主任(主持工作)。