当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2024年系列学术活动(第035场):符松韧 博士后 中国科学院数学与系统科学研究院

发表于: 2024-05-07   点击: 

报告题目:Stability in inverse problem of an elastic plate with a curved middle surface

报 告 人: 符松韧 博士后

所在单位: 中国科学院数学与系统科学研究院

报告时间:2024年5月15日 星期三 下午15:00-15:30

报告地点:腾讯会议 ID:785-154-326

校内联系人:余永毅 yuyy122@jlu.edu.cn



报告摘要: This talk is concerned with the inverse problem of determining three spatially varying functions including the source term and the mass density for a curved plate. The stability of determining these parameters is derived by the classical Carleman estimates and observability inequalities. Moreover, by developing a geometrical multiplier identity and using the compactness-uniqueness method, the tangential derivative can be removed. Two kinds of boundary conditions are considered: one is the hinged boundary conditions and the other is the clamped boundary conditions. In particular, the case of the Euler-Bernoulli plate is included.


报告人简介: 符松韧,现为中科院数学与系统科学研究院系统所博士后(合作导师:张纪峰研究员)。主要研究方向为偏微分方程的反问题以及稳定性理论,已在 Inverse Problems、Journal of Geometric Analysis等期刊发表论文多篇。