报告题目:Convergent plug-and-play splitting methods for nonconvex learning-based optimization with applications
报 告 人:吴中明 副教授 南京信息工程大学
报告时间:2024年4月22日下午 03:30
报告地点:数学楼第二报告厅
校内联系人:李欣欣 xinxinli@jlu.edu.cn
报告摘要:This talk will introduce several splitting methods for nonconvex optimization problems, and then combine them with extrapolation and Plug-and-Play (PnP) prior. Specifically, we investigate the convergence properties and applications of the three-operator splitting method, also known as Davis-Yin splitting (DYS) method, integrated with extrapolation and Plug-and-Play (PnP) denoiser within a nonconvex framework. Our approach provides an algorithmic framework that encompasses both extrapolated forward-backward splitting and extrapolated Douglas-Rachford splitting methods. To establish the convergence of the proposed method, we rigorously analyze its behavior based on the Kurdyka-Łojasiewicz property, subject to some tight parameter conditions. Moreover, we introduce two extrapolated PnP-DYS methods with convergence guarantee, where the traditional regularization prior is replaced by a gradient step-based denoiser. Finally, we conduct extensive experiments on image deblurring and image super-resolution problems, where our results showcase the advantage of the extrapolation strategy and the superior performance of the learning-based model that incorporates the PnP denoiser in terms of achieving high-quality recovery images.
报告人简介:吴中明,南京信息工程大学副教授,香港中文大学博士后,新加坡国立大学访问学者。研究方向为最优化理论、方法及其应用。在SIAM Journal on Imaging Sciences, IEEE Transactions on Signal Processing, Computational Optimization and Applications, Journal of Global Optimization, Mathematics of Computation, Annals of Operations Research等期刊发表/录用论文三十余篇。入选南京信息工程大学“青年科技之星”,江苏省“双创博士”,人社部博管办“香江学者计划”。担任中国运筹学会宣传工作委员会委员,中国运筹学会数学规划分会青年理事,江苏省运筹学会理事、副秘书长。主持国家自然科学青年基金项目,中国博士后面上资助项目,江苏省科技智库青年项目。