报告题目:A gentle introduction to the Drinfel'd associator
报 告 人:Martin Bordemann
所在单位:Université de Haute Alsace, Mulhouse, France
报告时间:2024年4月11日 20:00-22:00
报告地点:ZOOM Id:904 645 6677,Password:2024
会议链接:
https://zoom.us/j/9046456677?pwd=Y2ZoRUhrdWUvR0w0YmVydGY1TVNwQT09&omn=87511211646
报告摘要: This is a pedagogical talk about the famous associator invented by V.G.Drinfel'd in 1989/90 and a proof of its hexagon and pentagon identities. It is well-known that this associator has applications to the quantization of (quasi) Lie bialgebras (P.I.Etingof-D.A.Kazhdan and B.Enriquez-G.Halbout), deformation quantization (D.E.Tamarkin) and number theory (multiple zeta values) via its rôle in deforming symmetric monoidal categories into braided ones using an `infinitesimal braiding'. Drinfel'd's exposition in the original articles (but also the one in most textbooks) had been quite sketchy, and the mortal reader usually does not know to what extent s/he has to know deep complex analysis, algebraic topology, or conformal field theory. We give a much more elementary and explicit approach using limits of (formal) parallel transports along concrete paths in explicit star-shaped domains of the real line and plane with respect to explicit flat (formal) connections derived from the Knizhnik-Zamolodchikov connection.
报告人简介:Martin Bordemann is presently a full professor at the mathematics department of the Université de Haute Alsace, Mulhouse, France since 2000. He has done a PhD in mathematical physics on integrable systems with Hartmann Römer in Freiburg, Germany (1990) and a Master of mathematics with Otto Kegel in Freiburg on metrised Lie algebras (1989). His research is centered around deformation quantization, and more general algebraic deformation theory.