当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2024年系列学术活动(第012场):张建国 讲师 陕西师范大学

发表于: 2024-03-25   点击: 

报告题目:The K-theory for l^p uniform Roe algebras

报 告 人:张建国 讲师 陕西师范大学

报告时间:2024年3月29日8:30-9:30

报告地点:数学楼三楼第五研讨室

校内联系人: 钟永权 chungyc@jlu.edu.cn


报告摘要:Given a discrete metric space X with bounded geometry, we can associate it with a C*-subalgebra of B(l^2(X)), called the uniform Roe algebra of X which plays an important role in higher index theory. For any p greater than or equal to 1, we can similarly consider the l^p uniform Roe algebra of X as a Banach subalgebra of B(l^p(X)). A natural question is if the K-theory of l^p uniform Roe algebras depends on p? In ongoing work with Dapeng Zhou, we study this question for metric spaces which admit a coarse embedding into finite dimensional Hilbert space.


报告人简介: 张建国,陕西师范大学数学与统计学院讲师,研究方向是算子代数与非交换几何,研究兴趣包括粗Baum-Connes猜想及其l^p形式,相关成果发表在Comm. Math. Phys.,J. Noncommut. Geom.等期刊上。