报告题目:The K-theory for l^p uniform Roe algebras
报 告 人:张建国 讲师 陕西师范大学
报告时间:2024年3月29日8:30-9:30
报告地点:数学楼三楼第五研讨室
校内联系人: 钟永权 chungyc@jlu.edu.cn
报告摘要:Given a discrete metric space X with bounded geometry, we can associate it with a C*-subalgebra of B(l^2(X)), called the uniform Roe algebra of X which plays an important role in higher index theory. For any p greater than or equal to 1, we can similarly consider the l^p uniform Roe algebra of X as a Banach subalgebra of B(l^p(X)). A natural question is if the K-theory of l^p uniform Roe algebras depends on p? In ongoing work with Dapeng Zhou, we study this question for metric spaces which admit a coarse embedding into finite dimensional Hilbert space.
报告人简介: 张建国,陕西师范大学数学与统计学院讲师,研究方向是算子代数与非交换几何,研究兴趣包括粗Baum-Connes猜想及其l^p形式,相关成果发表在Comm. Math. Phys.,J. Noncommut. Geom.等期刊上。