当前位置: 首 页 - 科学研究 - 学术报告 - 正文

Sino-Russian Mathematics Center-JLU Colloquium(2023-022)—Perturbative expansion of Yang-Baxter operators and Lie algebra cohomology

发表于: 2023-10-09   点击: 

报告题目:Perturbative expansion of Yang-Baxter operators and Lie algebra cohomology

报 告 人:Emanuele Zappala

所在单位:Idaho State University

报告时间:2023年10月19日,20:00-22:00

报告地点:Zoom id:904 645 6677    Password:2023


报告摘要: Self-distributive objects in symmetric monoidal categories are known to produce Yang-Baxter operators, e.g. quandles and their linearization in modules. An important class of self-distributive objects arises from Lie algebras (binary and $n$-ary as well), giving a way of constructing a Yang-Baxter operator from an initial Lie algebra. This allows us to study the relation between self-distributive cohomology, Lie algebra cohomology, and Yang-Baxter cohomology. We therefore obtain a theory of infinitesimal deformations of Yang-Baxter operators that is tightly connected to the deformation theory of Lie algebras and their associated self-distributive objects. In this talk, I will explore these connections and the results that can be shown in this regard. Moreover, I will consider the problem of obtained higher order deformations of the Yang-Baxter operators in relation to the higher deformations of Lie algebras, therefore producing Yang-Baxter operators that are given by a formal power series (perturbative expansion). I will also present several open questions.


报告人简介:Emanuele Zappala is an assistant professor in the department of Mathematics and Statistics at Idaho State University. His work mainly concerns quantum algebra (Yang-Baxter operators and their cohomology), geometric topology (cohomological invariants of embedded surfaces), applications of algebra and topology to quantum machine learning, and operator learning (iterative methods in deep learning).