报告题目:Generalized Kauffman-Harary Conjecture
报 告 人:郭慧正 乔治华盛顿大学
报告时间:2023年6月25日 20:00-21:00
报告地点:数学楼3楼第1研讨室
校内联系人:王骁 wangxiaotop@jlu.edu.cn
报告摘要:For a reduced alternating diagram of a knot with a prime determinant $p,$ the Kauffman-Harary conjecture states that every non-trivial Fox $p$-coloring of the knot assigns different colors to its arcs. In this paper, we prove a generalization of the conjecture stated nineteen years ago by Asaeda, Przytycki, and Sikora: for every pair of distinct arcs in the reduced alternating diagram of a prime link with determinant $\delta,$ there exists a Fox $\delta$-coloring that distinguishes them.
报告人简介:郭慧正,本科毕业于伊利诺伊大学香槟分校,现就读于乔治华盛顿大学。从事低维拓扑,纽结理论方向的研究。