报告题目:Optimal decay rates of the compressible Euler equations with time-dependent damping in R^n
报告人:梅茗教授 McGill University & Champlain College
报告时间:2023年5月25日 8:30-9:30
报告地点:腾讯会议 ID:526-7221-3895
或点击链接直接加入会议:https://meeting.tencent.com/dm/2QY55jYQvvoK
校内联系人:刘长春 liucc@jlu.edu.cn
报告摘要:In this talk, we consider the multi-dimensional compressible Euler equations with time-dependent damping of the form $-\frac{\mu}{(1+t)^\lambda}\rho\boldsymbol u$ in $\mathbb R^n$, where $n\ge2$, $\mu>0$, and $\lambda\in[-1,1)$. When $\lambda>0$ ( $\lambda<0$), the damping effect time-asymptotically gets weaker (stronger), which is called under-damping (over damping). We show the optimal decay estimates of the solutions in the under-damping and over-damping cases, respectively, and see how the under-damping effect influences the structure of the compressible Euler system.
The series of studies are the joint works with Shanming Ji, published in J. Nonlinear Sci. (2023) and SIAM J. Math. Anal. (2023).
报告人简介:梅茗教授,加拿大McGill大学兼职教授及Champlain学院的终身教授,博士生导师。2015年被聘为吉林省“长白山学者”讲座教授,以及东北师范大学“东师学者”讲座教授。主要从事流体力学中偏微分方程和生物数学中带时滞反应扩散方程研究,在ARMA, SIAM, JDE, Commun.PDEs 等高水平杂志上发表论文100多篇,是多家SCI国际数学杂志的编委。并一直承担加拿大自然科学基金项目,魁北克省自然科学基金项目,及魁北克省大专院校国际局的基金项目。