当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必威、所2020年系列学术活动(第59场):闫伟 副研究员 北京应用物理与计算数学研究所

发表于: 2021-06-07   点击: 

报告题目:Steady Subsonic flows in High Dimensional Nozzle

报 告 人:闫伟 副研究员 北京应用物理与计算数学研究所

报告时间:2021年6月9日 14:00-15:00

报告地点:天元数学东北中心第六研讨室

校内联系人:郭斌  bguo@jlu.edu.cn


报告摘要:

In this talk, we present our result on subsonic irrotational flows in a multi-dimensional (n>1) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. We prove the existence and the uniqueness of the global uniformly subsonic flow in a general infinitely long nozzle of arbitrary dimension. Furthermore, we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of L. Bers.


报告人简介:

闫伟,北京应用物理与计算数学研究所副研究员,主要从事非线性偏微分方程和流体力学计算方法研究。在ARMA, CMP, JCP等发表学术论文10余篇,主持基金项目3项,曾获计算物理实验室创新奖,中物院研究生部优质课程奖。