当前位置: 首 页 - 团队队伍 - 副教授 - 正文

王瑞姝

发表于: 2020-05-29   点击: 

姓名:

王瑞姝


性别:

职称:

副教授

所在系别:

计算数学系

最高学历:

博士研究生

最高学位:

博士

Email:

wangrs_math@jlu.edu.cn




详细情况

所在学科业:

计算数学

所研究方向:

偏微分方程数值解

讲授课程:

数学分析习题

教育经历:

2016.09-2019.07       必威官网 计算数学 博士

2014.09-2016.09       必威官网 计算数学 硕士

2010.09-2014.06       必威官网 信息与计算科学 学士

工作经历:

2022.09-至今      必威官网 计算数学 副教授

2021.12-2022.09 必威官网 计算数学 讲师

2019.05-2021.12 必威官网 计算数学 博士后

科研项目:

1. 国家自然科学基金青年科学基金 2020.01-2022.12 在研

2. 博士后创新人才支持计划 2019.5-2021.12 已结题

3. 中国博士后科学基金面上资助 2020.01-2021.12  已结题

4. 吉林省博士后科研人员择优资助 2019.5-2021.12  已结题

学术论文:

1Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Ran*. A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math. 302 (2016), 171–185.

2 Wang, Chunmei; Wang, Junping*; Wang, Ruishu; Zhang, Ran. A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J. Comput. Appl. Math. 307 (2016), 346–366.

3 Zhai, Qilong; Ye, Xiu; Wang, Ruishu; Zhang, Ran. A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems. Comput. Math. Appl. 74 (2017), no. 10, 2243–2252.

4 Wang, Ruishu; Zhang, Ran; Zhang, Xu*; Zhang, Zhimin. Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin method. Numer. Methods Partial Differential Equations 34 (2018), no. 1, 317–335.

5 Wang, Junping; Wang, Ruishu; Zhai, Qilong; Zhang, Ran*. A systematic study on weak Galerkin finite wlement methods for second order elliptic problems. J. Sci. Comput. 74 (2018), no. 3, 1369–1396.

6 Wang, Xiuli; Zhai, Qilong; Wang, Ruishu; Jari, Rabeea. An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem. Appl. Math. Comput. 331 (2018), 20–32.

7 Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong*; Zhang, Kai. A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. Numer. Methods Partial Differential Equations 34 (2018), no. 3, 1009–1032.

8 Wang, Ruishu; Zhang, Ran*. A weak Galerkin finite element method for the linear elasticity problem in mixed form. J. Comput. Math. 36 (2018), no. 4, 469–491.

9 Wang,Ruishu; Wang,xiaoshen; Zhang,Ran*. A Modified Weak Galerkin Finite Element Method

for the Poroelasticity Problems. Numer. Math. Theory Methods Appl. 11 (2018), no. 3, 518–539.

10 Wang, Ruishu; Wang, Xiaoshen; Zhang, Kai*; Zhou, Qian. A hybridized weak Galerkin finite element method for the linear elasticity problem in mixed form. Front. Math. China 13 (2018), no. 5, 1121–1140.

11 Wang, Ruishu; Mu, Lin*; Ye, Xiu. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 1, 351–361.

12 Wang, Ruishu; Zhang, Ran; Wang, Xiuli; Jia, Jiwei*. Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362 (2019), 528–539.

13 Harper, Graham; Wang, Ruishu; Liu, Jiangguo*; Tavener, Simon; Zhang, Ran. A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements. Comput. Math. Appl. 80 (2020), no. 6, 1578–1595.

14 Feng, Yue; Liu, Yujie; Wang, Ruishu*; Zhang, Shangyou. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electron. Res. Arch. 29 (2021), no. 3, 2375–2389.

15 Wang, Ruishu; Wang, Zhuoran; Liu, Jiangguo; Tavener, Simon; Zhang, Ran. Locking-free CG-type finite element solvers for linear elasticity on simplicial meshes. Int. J. Numer. Anal. Model. 18 (2021), no. 5, 690–711.

16 Feng, Yue; Liu, Yujie*; Wang, Ruishu; Zhang, Shangyou. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electron. Res. Arch. 29 (2022) , no. 3, 2375-2389.




上一篇: 王秀丽

下一篇: 唐荣